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TRANWNIC FLOW PAST A WEDGE PROFILE WITH DETACHED BOW GAVEV~' 8,' 
By WALTER G. VINCENTI and CLEO B. WAGONER 

SUMMARY 

A theoretical study has been made of the aerodynamic charac- 
teristics at zero angle of attack of a thin, doubly symmetrical 
double-wedge pro$le in the range of supersonic flight speed in 
which the bow wave is detached. The analysis utilizes the 
equations of the transonic small-disturbance theory and involves 
no assumptions beyond those implicit in this theory. The 
mixed flow about the front half of the profile is calculated by 
relaxation solution of a boundary-value problem for the transonic 
small-disturbance equation in the hodograph plane (i.e., the 
Tricomi equation >. The methods follow established lines excel;t 
for the somewhat novel treatment of the boundary conditions 
along the shock polar and sonic line. The purely supersonic 
$0~ about the rear of the profile is found by means of the method 
of characteristics specialized to the transonic small-disturbance 
theory. Complete calculations were made for four values of the 
fransonic similarity parameter. These were found suficient 
to bridge the gap between the previous results of Guderley and 
Yoshihara at a Mach number of 1 and the results which are 
readily obtained when the bow wave is attached and the flow is 
completely supersonic. 

The results of the study provide the following information as a 
function qf the transonic similarity parameter: (II) shape and 
location of bow wave and sonic line, (2) chordwise distribution 
of Mach number and pressure, and (3) integrated pressure drag 
of front wedge, rear wedge, and complete projile. The results 
show that the local Mach number at a fixed point on a profile 
of given thickness ratio increases monotonically as the free- 
stream Mach number increases from 1. In agreement with 
other recent jindings, this increase is at Jirst very slight for a 
considerable increment away from the sonic jlight condition. 
The coeficient of pressure drag for the complete profile varies 
relatively slightly near the sonic flight speed, decreases rapidly 
in the vicinity of bow-wave attachment, and then decreases at a 
progressively less rapid rate in the range of purely supersonic 
Row. 

INTRODUCTION 

At supersonic flight speeds, the flow field about a wedge of 
&rite span is characterized at zero angle of attack by a 
symmetrical, two-dimensional shock wave. This wave, 
which forms either on or in front of the apex of the wedge, is 

1 Supersedes NACA TN 2339, “ Transonic Flow Past a Wedge Profile With Detached Bow 
Wnve-General Analytical Method and Final Calculated Results” by Walter CZ. Vincenti 
nd Cleo B. Wagoner, 1951, and NACA TN 2588, “Transonic Flow Past a Wedge Proflle 
.Vith Detached Bow Wave-Details of Analysis” by Walter 0. Vimenti and Cleo B. Wsgo- 
Ier. 1951. 
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called the bow wave in recognition of its analogy to the 
surface wave which forms at the bow of a moving ship. As 
is well known, the shape of the bow wave and the nature of 
the flow about the wedge vary depending upon the apex angle 
of the wedge and the Mach number of the free stream. 
Consider, for simplicity, the case of a wedge of fixed angle. 
It will be assumed that the wedge is perfectly sharp and that 
the effects of viscosity are negligible. It will also be assumed 
that the wedge is of finite length in the streamwise direction. 
Under these circumstances, t,hree essentially different regimes 
of flow are possible, depending on the Mach number of the 
free stream: 

1. Attached bow wave with purely supersonic flow: 
Above a certain free-stream Mach number, the value of 
which depends on the magnitude of the wedge angle, the bow 
wave is attached to the apex of the wedge, and the local flow 
at all points downstream of the wave is supersonic. Under 
these conditions, the velocity at the surface of the wedge is 
uniform, and the bow wave is straight out to its point of 
intersection with the first Mach wave from the downstream 
end of the wedge. This regime of purely supersonic flow 
was first studied by Prandtl and Meyer as long ago as 1908 
(reference 1) and is now to be found analyzed in any standard 
text on gas dynamics. 

2. Attached bow wave with mixed subsonic and supersonic 
flow: As the free-stream Mach number is reduced in the 
purely supersonic regime, a condition is eventually reached 
at which the local velocity downstream of the straight por- 
tion of the bow wave is exactly sonic. With further reduc- 
tion in Mach number, the flow in the vicinity of the wedge 
becomes subsonic, and the entire fundamental nature of the 
flow field is altered. For a small range of free-stream Mach 
number, the bow wave remains attached to the apex, but the 
velocity along the surface of the wedge is now nonuniform. 
The wave itself, though still inclined toward the rear at all 
points, is now curved starting from its beginning at the apex. 
The rather complex sequence of events in this particular 
regime of mixed subsonic and supersonic flow has .beea 
clarified by Guderley (reference 2), but no specifid calcula- 
tions have been made. Since the regime prevails over only 
a narrow range of Mach number, the lack of quantitative 
information is not of serious consequence. 

3. Detached bow wave: At a free-stream Mach number 
slightly below that which gives sonic flow behind the bow 

1 . 
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wave, a limiting condition is reached below which an attached 
wave is no longer possible. At lower Mach numbers, there- 
fore, the wave detaches from the apex and stands in the 
stream forward of the wedge. In this regime of flow, which 
prevails down to a Mach number of 1, the subsonic flow over 
the surface of the wedge has a stagnation point at the apex. 
The element of the curved bow wave directly ahead of the 
apex is now normal to the direction of the free stream. 
This regime of mixed flow may occupy a considerable interval 
of Mach number in the currently important range of transonic 
flight speeds. Because of difficulties inherent in the mathe- 
matics of the problem, however, quantitative theoretical 
results free of special assumptions are generally lacking. 

Perhaps the first calculations of the flow about a finite 
wedge with detached bow wave were made by Maccoll and 
Codd in England between 1938 and 1942 (reference 3) and 
were reported by Maccoll at the 6th International Congress 
of Applied Mechanics in Paris in 1946 (reference 4). In this 
initial work, the computations were carried out in the plane 
of physical coordinates-or, more precisely, in a plane of 
distorted physical coordinates. For reasons which will 
appear later, a direct solution was not possible with this 
approach, so that recourse was had to a method of successive 
approximations. The successive approximations were ob- 
tained by numerical integration of the partial differential 
equations of fluid motion in the subsonic portion of the flow 
field. By this means Maccoll and Codd were able to obtain 
results for the mixed flow about bodies of various shape. 
The calculations for the wedge with a detached wave were 
confined, however, to the single case of a free-stream Mach 
number of 1.5 and a total wedge angle of 40’. 

An alternative method of analysis, which eliminates the 
need for successive approximations, has been described 
independently by Frank1 (1945) in Russia and by Guderley 
(1947) in this country (references 5 and 2, respectively). 
In this approach, the problem of the wedge with detached 
wave is formulated as a boundary-value problem with the 
velocity components as the independent variables. Using 
this hodograph method, Frank1 was able to prove that the 
solution of the detached-wave problem is unique. (This 
had been tacitly assumed by Maccoll and Codd.) Guderley, 
following a similar approach, showed how the hodograph 
problem can be simplified by restriction to small disturbances 
about the sonic velocity. These developments have been 
subsequently reviewed in nonmathematical form by Buse- 
mann (reference 6). More recently (1949), Guderley and 
Yoshihara, using the small-disturbance theory, have obtained 
a quantitative solution for the finite wedge at a free-stream 
Mach number of 1 (reference 7). In this special limiting 
case, the bow wave disappears at infinity upstream, which 
facilitates the mathematical analysis. The corresponding 
boundary-value problem in the hodograph plane was solved 
analytically by Guderley and Yoshihara with the aid of 
Fourier analysis and a harmonic analyzer. For free-stream 
Mach numbers greater than 1, a comparable analytical 
solution of the boundary-value problem is not yet available. 
Such a solution would appear, indeed, to present serious 
mathematical difficulties, even in the relatively simple 
small-disturbance theory. 

The work described in the present report is a logical 
extension and application of the hodograph method of 
Guderley and Frankl. To circumvent the lack of an analyt- 
ical solution at Mach numbers greater than 1, it was proposed 
in the present study to solve the boundary-value problem 
by means of numerical techniques. In the application of 
numerical methods, the present work has much in common 
with the investigations of Maccoll and Codd. The use of the 
hodograph approach, however, eliminates the need for 
successive approximations and brings about other improve- 
ments in ease and rigor. Furthermore, through use of the 
similarity principles inherent in the small-disturbance 
theory, general results applicable to any thin wedge can be 
obtained on the basis of a relatively small number of specific 
calculations. In the present work, these results are used, in 
particular, to study the pressure distribution and drag of a 
complete, doubly symmetrical double-wedge profile in the 
range of flight Mach numbers from unity upwards. The 
report is divided into two major parts. Part I contains a 
nonmathematical description of the theoretical problem and 
a detailed discussion of the final results. This portion of the 
report can be read without reference to part II, which 
explains the details of the mathematical procedures. 

Since the completion of the present calculations, experi- 
mental studies of the wedge problem have been reported by 
Bryson in reference 8 and by Griffith in reference 9. Certain 
of the results which appear in Bryson’s report were also 
given in preliminary form by Liepmann and Bryson in 
reference 10. 

NOTATION 
PRIMARY SYMBOLS 

critical velocity (i. e., velocity at which the 
velocity of flow and the velocity of sound are 
equal) 

airfoil chord 

drag coefficient 
( 

drag per unit span 
> 

generalized drag coefFicien7~~[(;ilB!‘i] cd 

pressilre coefficient 7 
( > 

generalized pressure coefficient { [y$:i3] cp ] 
length of irregular lattice intervals relative to 

that of basic interval 

function defining shape of profile 

functions defined along sonic Iine in hodograph 
(See equation (23) .) 

integral defined by eqtiation (56) 
(i=1,2,3) component integrals (See equation 

(50) et seq.) 
functions of e, f, and ;j, (See equation (44) .) 
numerical constants (See equations (24) and 

(32) .) 
lMach number 
static pressure 

dynamic pressure cz PM’) 
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all> 
t 
V 
?Y 
Y 

x 

4 

function defined by equation (41) 
airfoil thickness 
local speed of flow 
Cartesian coordinates 

ordinate function f[(T+ l)(~)~‘“(~)] 

absolute value of ?j at left-hand limit of lattice 
ratio of specific heats (1.4 for air) 
basic lattice interval 
hodograph variable defined by equation (18) 
local inclination of flow relative to z axis 
variable of integration (See equation (25).) 
half-angle of wedge 
ordinates of upgoing and downgoing character- 

istics at +=O 
hodograph variable (See equation (23) .) 

speed function 2M2--1 - ~ KY + 1 >ww’” 

to 

0 
9,1,2, etc. 

f* 

Lo==1 
E,=O 

transonic similarity parameter M,z-1 
NrS l>W>l”‘” 3 

fluid density 
stream function 
value of # at the point E (See equation (33 

SUBSCRIPTS 

conditions in free stream 
value at a prescribed lattice point 
conditions at critical speed 
front portion of airfoil 
rear nortion of airfoil 
value at free-stream Mach number of. l[ 
value at &=O 

/ 
SUPERSCRIPT 

quantity in normalized form (See equation 
(26) .> 

PART I-GENERAL METHOD AND FINAL RESULTS 

GENERAL ANALYTICAL METHOD 
DESCRIPTION OF FLOW FIELD 

It is convenient to begin by examining the nature of the 
flow field which exists around a doubly symmetrical, double- 
wedge profile when the bow wave is detached. The com- 
plete double-wedge profile is considered here since the 
determination of the characteristics of this profile is the final 
object of the present work. The description and results 
relative to the flow over the forward half of this profile, how- 
ever, are applicable, within minor limitations, to the flow over 
any finite wedge which terminates in a sharp convex corner. 
It will be assumed in all that follows that the fluid surround- 
ing the profile is a perfect gas and that the effects of viscosity 
and thermal conductivity are negligible. 

Under these idealized conditions, the flow about a non- 
lifting double-wedge profile with a detached bow wave is 
qualitatively as shown in figure 1. (Since the flow is sym- 
metrical about the chord line, only the upper half of the field 
is shown.) As indicated, the subsonic flow which exists 

Shock waves 
Sonic line 

Expansion 
Compression 

Mach 
lines 

FIGURE l.-Flow about double-wedge profile with detached bow wave. 

behind the detached wave is confined to a limited region 
bounded by the wave, the sonic line, and the forward half of 
the profile. The fluid which enters this region is decelerated 

discontinuously from supersonic to subsonic velocity in 
passing through the detached shock wave. Downstream of 
the shock wave, the fluid is accelerated continuously, first to 
the speed of sound at the sonic line and then to supersonic 
speed beyond this line. As previously mentioned, the de- 
tached wave begins normal to the free stream at the axis of 
symmetry (point A) and curves progressively downstream. 
Far from the airfoil, the slope of the wave tends asymptot- 
ically to the slope of a free-stream Mach line. Since the 
detached wave is curved, the flow behind the wave is, of 
course, nonuniform. The sonic line, which forms the down- 
stream boundary of the subsonic region, begins at the ridge 
of the profile (point B) and extends to some point E on the 
shock wave. Since the flow in the subsonic region is non- 
uniform, the sonic line is curved. As can be demonstrated, 
however, it must leave the ridge normal to the forward surface 
of the profile. 

Directly to the rear of the sonic line at the ridge, a super- 
sonic expansion fan originates. This expansion fan tends, in 
the immediate vicinity of the ridge, toward a simple Prandtl- 
Meyer flow, in which the sonic line and the elementary 
Mach waves would be straight lines emanating radially from 
the corner. Since the sonic line in the present flow is curved, 
however, the Mach waves of the expansion fan must be 
curved as well, tbe curvature being in the forward direction. 
By virtue of this forward curvature, certain of the expansion 
waves meet the sonic line, while others meet the outer portion 
of the bow wave. One particular expansion wave BDE 
meets both the sonic line and the bow wave at their common 
point E. This particular wave may be termed the “separat- 
ing wave,” since it separates the expansion waves into two 
classes: those which reach the sonic line and those which do 
not. It is apparent that any small disturbance introduced 
into the expansion fan forward of the separating wave BDE 
will travel along a Mach wave to a point on the sonic line. 
From there it will spread throughout the subsonic region, 
thereby influencing the shape of the sonic line, and, hence, 
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of the expansion fan itself. The entire subsonic region and 
the limited portion BDECB of the adjacent supersonic region 
are thus interdependent and must be regarded for analytical 
purposes as a single, bounded transonic zone. A small dis- 
turbance originating in the purely supersonic region to the 
rear of the separating wave BDE cannot reach the sonic line 
and can have no effect upon the flow in the aforementioned 
transonic zone. 

The supersonic flow over the rear of the airfoil is directly 
influenced by conditions in the transonic part of the field. 
Analysis indicates that the elementary expansion waves 
which reach the sonic line do not terminate there but are 
reflected as elementary compression waves. These waves 
are again reflected as compression waves at the solid surface 
of the airfoil. After this last reflection, the elementary com- 
pression waves coaiesce t,o form an oblique shock wave which 
begins at the ridge. On thin sections this shock wave is very 
weak and may be regarded, for all practical purposes, as a 
distributed compression. Rearward of the oblique wave 
from the ridge, the flow continues with supersonic velocity 
to the trailing edge, where there is a second oblique shock 
wave of the type familiar from purely supersonic airfoil 
problems. 

METHOD OF ANALYSIS 

To handle the present problem analytically, the flow must 
first be determined in the transonic zone bounded by the bow 
wave, the airfoil profile, and the separating Mach wave. As 
in all transonic problems, such determination involves the 
solution of a partial differential equation of mixed type, 
that is, one which is elliptic in the subsonic region and hyper- 
bolic in the adjoining supersonic region. The solution of an 
equation of this type is troublesome at best. In the present 
problem, however, additional difficulties arise. First of all, 
the differential equation, beside being of the mixed type, is 
also nonlinear. Second, the location of two of the boundaries 
of the transonic zone-the bow wave and the separating 
Mach wave-is not known a priori but must be determined 
as part of the solution. Third, the flow in the transonic zone, 
having passed through the curved bow Ivave, is necessarily 
rotational. 

The foregoing difficulties seriously complicate any attempt 
to solve the problem in the physical plane, even when nu- 
merical techniques are employed. The nonlinearity of the 
differential equation, though it does not preclude a solution 
by numerical methods, does greatly increase the amount of 
numerical work over that which is ordinarily encountered 
with a linear equation. The lack of knowledge concerning 
the location of the boundaries of the transonic zone can be 
overcome by resorting to a method of successive approxima- 
tions, as in the work of Maccoll and Codd (references 3 and 
4). Such a procedure, however, entails considerably more 
labor than would be required if the boundaries were known 
at the outset.’ The difficulties due to the fluid rotation can 

2 MaccoIl and Codd simpIify both the furtdamenta1 problem and the calcuIafive procedure 
by taking the sonic line, instead of the separating Mach wave, 8s the downstream limit of 
the region of calculation. This eliminates the need for considering the mathematical singu- 
larity which exists behind the sonic line at the ridge, but requires in return that some condi- 
tion be specified along the sonic line itself. This requirement is met by assuming that the 
streamlines and the sonic line are mutually perpendicular and that the sonic line may be 
represented by a suitable parabola. The error introduced by these special assumptions is 
not known, but would probably be considerable for thin wedges at low supersonic speeds. 

be disposed of by simply assuming that the rotation is neg- 
ligible. The inaccuracies introduced by this assumption are 
undoubtedly small, except for thick wedges moving at rela- 
tively high Mach numbers. Even with the rotation elimi- 
nated from the equations, however, the basic nonlinearity 
still remains. 

In addition to the theoretical difficulties just discussed, 
there exists a practical complication which is important from 
the computational point of view. This complication arises 
from the fact that any rigorous solution of the problem must 
be a function of three independent variables: the free-stream 
Mach number MO, the thickness ratio t/e, and the ratio of 
specific heats y- Thus, if a rigorous theory is used, a con- 
siderable number of cases must be calculated to obtain an 
adequate cross section of numerical results. 

As in the work of Guderley and Frankl (references 2 and 
5), the first step in the solution of the problem is to trans- 
form the flow from the physical plane to the hodograph 
plane. This affords an immediate simplification by provid- 
ing a completely fixed set of boundaries for the transonic 
zone. The bow wave, in particular, goes over into a known 
shock polar, while the separating Mach wave transforms 
into one of the fixed epicycloids which make up the charac- 
teristic net in the hodograph. The differential equation in 
the hodograph variables is still of the mixed type, as would 
be expected in view of the transonic nature of the original 
problem. The equation is also still nonlinear if the fluid 
rotation is included in the analysis. If the rotation is arbi- 
trarily neglected, however, the differential equation in the 
hodograph becomes linear, in contrast to the previous situa- 
tion in the physical coordinates.3 Since tbe fundamentals 
of the problem are unchanged by the transformation to the 
hodograph, the complication still remains that any solution 
must be a function of the three variables mentioned above. 

The second major step in the analysis is to introduce the 
assumption of small disturbances. Specifically, it is assumed 
that the entire flow field, including the free stream, differs 
only sIightIy from a paraIIe1 flow at the critical speed u,.~ 
As is well known, this small-disturbance approximation 
brings about important simplifications in the mathematics 
of the problem. Firs.t, the terms representing fluid rotation 
turn out to be of the same order as other terms which are 
neglected in the analysis. This means that the use of the 
linear differential equation in the hodograph is strictly 
justified within the framework of the approximate theory. 
Second, the differential equation itself, though still of mixed 
type, takes on an especially simple form (the Tricomi 
equation). This equation has been the subject of consid- 

1 Frank13 uniqueness proof, mentioned in the introduction, is based on the linear equa- 
tion and thus ignores the fluid rotation. It seems unlikely. however, that the inclusion of 
rotational effects would alter the conclusions of the study. 

4 As discussed in several recent papers (see, for example, references 11 and 12)) the theory 
can also be formulated in terms of differences relative to the free-stream speed Vo. This 
letter, less restrictive formulation reveals clearly the relationship which exists between the 
transonie small-disturbance theory and the familiar linear theory of subsonic or supersonic 
flow. As shown by Spreiter (see page 9 of reference IZ), an (I* analysis wilI yield results 
identical to those of a V. analysis provided the similarity parameter and pressure coefficient 
in the former case are taken as in equations (1) and (7) below. If this procedure is followed, 
the results of the (I, analysis may even be expected to tend toward those of linear theory as 
the free-stream Mach number increases or decreases from I. (An analytical example of just 
this behavior has been given by Bryson in appendix A of reference 8.) It appears, therefore, 
that the a. formulation, when suitably used, gives results of wider theoretical validity than 
would be anticipated on the basis of its own rather restrictive underlying assumption. 
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erable mathematical study, beginning with the work of 
Tricomi (reference 13). Third, the solution of the problem 
becomes a function of a single parameter which involves 
all three of the individual variables previously discussed. 
This is the so-called transonic similarity parameter &, 
which can be written 

to= 
.-M,2- 1 

Nr + 1) w)12’3 (1) 
This last simplification greatly reduces the amount of com- 
putation required to investigate the effects of changes in 
the individual variables. 

It may be remarked in passing that the assumption of 
small disturbances will obviously be violated near the stag- 
nation point which exists at the leading edge of the profile. 
A similar situation is, of course, encountered in the classical 
theory of thin airfoils at purely subsonic speeds. There 
the inconsistency is known to be of little practical conse- 
quence except in the immediate vicinity of the leading edge 
itself. It is to be expected that the same result will prevail 
in the locally subsonic flow encountered here. 

A detailed account of the formulation and solution of 
the boundary-value problem in the hodograph plane is given 
in part II of the present report. Suffice it here to say that 
the boundaries and boundary conditions are taken essenti- 
ally as given by Guderley (reference 2), except that the 
supersonic portion of the transonic zone is replaced by an 
equivalent integral relation which must be satisfied every- 
where along the sonic line. By this modification, which 
involves no approximations beyond those already employed, 
the mathematical problem is reduced to that of solving a 
purely elliptic differential equation. This was found 
essential to the numerical solution of the problem. The 
numerical solution itself is carried out in more or less standard 
fashion by means of finite-difference equations and relaxation 
techniques.6 

Once the solution for the front half of the airfoil is deter- 
mined in t,he hodograph plane, the transformation back to 
the physical plane is a simple matter. The purely super- 
sonic flow over the rear half is then constructed in the 
physical plane by means of the method of characteristics as 
specialized to the small-disturbance theory. 

It will be noted that the solution of the problem in the 
present manner, though laborious because of the use of 
numerical techniques, requires no special assumptions 
beyond those implicit in the differential equations. In 
particular, no restrictions are necessary with regard to the 
geometric shape of the shock wave or sonic line. 

Although the transonic small-disturbance theory was 
originally formulated for the solution of problems of mixed 
flow, it is not confined in its applications to problems in 
which such flow actually occurs. The theory may still be 
applied-in simple analytical form, in fact-in the com- 
pletely supersonic regime, where the bow wave is attached 
and the region of subsonic flow has disappeared. This is 
accomplished by first reducing the complete equations for 
the oblique shock wave and the Prandtl-Meyer expansion to 

5 As is often the case with relaxation work, the numerical calculations made considerable 
demands upon the skill and perseverance of the computer. Special credit is due Mrs. Helen 
Mendel for the successful completion of this phase of the study. 

appropriate forms involving the transonic similarity param- 
eter (see, for example, the work of Tsien and Baron, reference 
14) and then applying these results as in the standard shock- 
expansion method. This procedure is applicable to the 
present airfoil when .$ = 2 > *13= 1.260, this being the condition, 
to the order of accuracy of the small-disturbance theory, for 
an attached wave with not less than sonic flow on the down- 
stream side.6 (Consistent with the remarks in the intro- 
duction, attachment of the wave itself takes place at the 
somewhat lower value of &,=3/(4)2/3=1.191.) 

RESULTS AND DISCUSSION 

Calculations have been carried out, according to the 
methods described in the preceding se&ion, for four values 
of the similarity parameter &,; namely, 0.484, 0.703, 0.921, 
and 1.058. These four cases were found sufficient to bridge 
the gap between the findings of Guderley and Yoshihara at 
&&= 1’ (&,=O) and the analytical results which are available 
when the bow wave is attached and the flow is everywhere 
supersonic (& 2_ 1.260). The complete results are given in 
figures 2 through 8 and are described in the following para- 
graphs. 

BOW WAVE AND SONIC LINE 

The dimensionless ordinates y/c of any chosen line which 
intersects the streamlines are given in the transonic small- 
disturbance theory by an equation of the form 

(2) 

where Y is a function of the dimensionless abscissa x/c and 
the similarity parameter &,. (For derivation of t,he transonic 
similarity rules on which these and later equations are based, 
see references 11, 12, 15, 16, or 17.) The calculated shape 
of the bow wave and sonic line is shown in figure 2 in the 
form prescribed by the foregoing equation. 

To facilitate the discussion, it will sometimes be con- 
venient to look upon a generalized plot,, such as that of 
figure 2, as applying to fixed values of t/c and 7. From this 
point of view, a decrease toward zero in the similarity 
parameter can be thought of as simply a decrease toward 1 in 
the free-stream Mach number. In figure 2 an appreciation 
of physical proportions is further achieved by dividing Y 
by the numerical factor (0.24)‘i3 and plotting the results to 
equal vertical and horizontal scales. Thus, for the specific con- 
ditions of t/c=O.lO and y= 1.4 (air), the vertical scale reads 
directly in values of y/c, and the figure provides as it stands a 
geometrically correct representration of the flow field. The 
corresponding values of MO are given by * thi: upper figure 
along the shock wave. (Th e sonic velocity will first appear 
in the flow field about the lo-percent-thick section at a 
free-stream Mach number of approximately 1.219 (to= 1.260). 
Detachment, of the shock wave will occur at the slightly 
lower Mach number of 1.208 (&,=1.191).) 

0 In the shock-expansion method it is assumed that the pressure is uniform on each straight- 
line segment of the airfoil surface. Because of interaction effects between the shock wave 
from the bow and the expansion fan from the ridge, this condition is not completely fulfilled 
until the flow behind the born wave is somewhat greater than sonic, that is, until the value 
of 6. is somewhat above 1.260. In conformity with usual practice, this complication is ignored 
in the prewnt work since it is known to have only a negligible influence upon the computed 
characteristics of the airfoil. 
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x/c =3.16 

FIGURE 2.-Shape of bow wave and sonic line. 

The dashed outline of the airfoil which appears in figure 2 
is to be regarded as a diagrammatic representation only. 
In a similarity plot of this kind, the profile must be regarded, 
properly speaking, as coinciding with the horizontal axis. 
(For a more complete discussion of this point see page 29 of 
reference 18.) The dashed profile in figure 2 is included only 
as an aid in orienting .the’ reader. 

It will be noted that in each case in figure 2 the shock 
wave and sonic line as calculated do not meet at a common 
point. This discrepancy appears in the course of the trans- 
formation from the hodograph to the physical plane; it is 
primarily a reflection of the fact that a solution of the 
system of finite-difference equations in the hodograph is not 
an exact solution of the boundary-value problem for the 
original partial differential equation. This so-called “trun- 
cation error” can, in principle, be made as small as desired 
by progressively decreasing the mesh size in the hodograph. 
In the present work this procedure has been carried in each 
case to the point where increased refinement caused only an 

insignificant change in the pressure distribution or over-all 
drag. Because of the nature of the hodograph transforma- 
tion, however, the details of the accompanying flow field are 
subject to somewhat greater error, particularly with regard 
to the over-all height of the subsonic region. As implied by 
the size of the gap between the shock wave and sonic line, 
the absolute magnitude of this error increases as &, decreases, 
though the percentage error in terms of the height of the 
subsonic region is nearly constant. The actual magnitude 
of the truncation error is in all cases certainly less than the 
errors caused by the basic theoretical assumption of small 
disturbances. 

It is seen in figure 2 that in each case the calculated sonic 
line begins at the midchord point at right angles to the 
horizontal axis. This result is consistent, to the accuracy 
of the small-disturbance theory, with the known fact that 
the sonic line given by any rigorous treatment would leave 
the ridge normal to the forward surface of the profile. As it 
leaves the airfoil, the sonic line curves at first rather sharply 
toward the rear. The initial curvature can, in fact, be 
shown to be infinite. A short distance from the airfoil the 
rearward trend is reversed, with the result that the sonic 
line has a predominately forward curvature over most of its 
length. The flow across most of the sonic line in the present 
problem is apparently analogous to the accelerating tran- 
sonic flow through a continuous-walled, converging-diverg- 
ing nozzle, where the sonic line is known to have a consistently 
forward curvature. The rearward curvature which is 
evident close to the airfoil is only a localized effect caused 
by the presence of the sharp corner at the ridge. 

The rapidity with which the subsonic region expands 
vertically with reduction in the free-stream Mach number 
is striking. For the airfoil of lo-percent thickness ratio, for 
example, the semiheight of the subsonic region in figure 1 
grows from approximately 2.4 chord lengths at M,= 1.187 
to approximately 18.3 chord lengths at M,=1.090. The 
height of the subsonic region (and the distance of the shock 
wave ahead of the airfoil) would, of course, tend to infinity 
as the Mach number approached still closer to unity. These 
results imply that the tip effects are likely to be considerable 
In finite-span wings at free-stream Mach numbers close to 1. 

According to the transonic similarity rules, the speed of 
low at any point in the generalized flow field is determined 
3y the local value of a dimensionless speed function l, which 
:an be written 

E= M2-1 
KY+ 1) @/412’3 (3) 

ahere M is the local value of the Mach number. (The tran- 
sonic similarity parameter is thus merely the special value 
)f the speed function which applies at points in the free 
itream.) As a matter of interest, contours of constant 
Ipeed function [ in the region between the shock wave and 
ionic line have been determined for the case of &=0.921. 
l’hese results are shown in figure 3. By virtue of equation 
3), the contours of constant .$ may be interpreted, for fixed 
values of t/c and y, as contours of constant Mach number. 
I’hey may also be regarded, to the order of accuracy of the 
ransonic small-disturbance theory, as contours of constant 
velocity, pressure, density, and temperature. It will be , 
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noted that certain of the contours, in common with the 
sonic line, fail to meet the shock wave. This is again a 
reflection of errors inherent in the finite-difference solution. 

3.0 I I I I 
For t/c = 0.10 and ~‘1.4, 

I%?* = 1.164 

7 / 

: 
/ I 

c _- 
1.0 1.5 

FIGURE 3.-Contours of constant speed function for &,=O.QZl. 

[$XIORDWISE DISTRIBUTION OF MACHZNUMBER AND PRESSURE 

At points on the surface of the airfoil, the speed function 
5 is related to the similarity parameter i. by an equation of 
the form 

4=5 ($ to) (4) 

The calculated values of 5 at the surface of the airfoil are 
shown in figure 4 for the four values of the similarity param- 
eter. Also included in the figure are results for .$,=O as 
obtained from the previously cited work of Guderley and 
Yoshihara (reference 7). In line with the earlier interpreta- 
tion, the curves of figure 4 may be looked upon here as 
representing the chordwise distribution of Mach number for 
fixed values of t/c and y but different va,lues of M,. 

234239-53-2 

2.4 

1.6 I I I I I 

-8 ,’ n , 
$ cn 1 /,3-$/q 

--- 
------ 

II 
FIGURE 4.-Chordwise distribution of speed function at surface of airfoil. 

All of the distribution curves of figure 4 have the same 
general shape. In each case, for example, the calculated 
Mach number at the leading edge has an infinite negative 
value. This physically impossible result, which is charac- 
teristic of small-disturbance theories in general, represents 
the stagnation condition which must prevail in the real sub- 
sonic flow at the leading edge. Rearward from the leading 
edge, the Mach number in each case rises more or less rapidly 
to the prescribed value of unity on the forward side of the 
ridge. Turning the corner at the ridge, the flow expands 
discontinuously to a supersonic Mach number which, for 
given values of t/c and y, is independent of conditions in the 
free stream. Over the rear half of the airfoil, the Mach 
number decreases slightly as a result of the compression 
waves reflected from the sonic line (see fig. 1). In general, 
for an airfoil of fixed thickness ratio, increasing the free- 
stream Mach number from unity brings about an increase 
in the average local Mach number over both the front and 
rear surfaces of the profile. 

The nature of this latter variation is illustrated more clearly 
in figure 5, which is a cross plot of f versus t, for the 25- and 
75-percent chordwise stations. The short vertical lines 
labeled S at &,= 1.260 denote the point at which the tran- 
sonic small-disturbance theory predicts an attached bow 
wave with uniform sonic flow over the forward half of the 
profile. Results at this point and at all points to the right 
of S can be determined analytically as explained earlier in 
the text. It is apparent from figure 5 that the values given 
by the present numerical work satisfactorily bridge the gap 
which would otherwise exist between the analytical results 
at either side. 

B - 
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a Guderley and Yoshihara (Ref.7) 

FIGURE 5.-Variation of speed function at 2% and *r&percent chordwise stations. 

As can be seen from figure 5, the change in local conditions 
with change in free-stream Mach number is slight for a 
considerable distance away from a free-stream Mach num- 
ber of 1. The curves of this figure have, in fact, been drawn 
with a horizontal tangent at &=O. This is in accord with 
Guderley’s recent analytical study of two-dimensional flows 
with a free-stream Mach number close to 1 (reference 19). 
Guderley’s results indicate that just at the sonic flight speed 
the local Mach number at any point on an arbitrary two- 
dimensional profile is stationary with respect to variations 
in the free-stream Mach number, that is, 

(5) 

In terms of the present variables (see equations (1) and (3)) 
this requires that 

(6) 

The same results were anticipated by Liepmann and Bryson 
on the basis of the physical considerations presented in 
reference 10. 

The pressure coefficient C, = (p-pJ/q, is given in the 
transonic small-disturbance theory by the equation 

Ti3 c 213 G=-2k-Eo) 

At points on the surface of the airfoil, equation (4) applies 
for [, so that equation (7) there has the form 

where cP is a generalized pressure coefficient which depends 
only on x/c and E,. The values of ED for the double-wedge 
section, as calculated by means of equation (7), are shown in 
figure 6. The curves here are essentially the same as the 
curves of ,$ in figure 4, except that they are inverted and 
shifted vertically by an amount which differs for each curve. 
It can be seen from this figure that as the free-stream Mach 

6.4 
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cp --- .703 
----- .484 
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! 
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Guderley and Yoshihara (Ref.711 

- 4.8 
I I I I 

FIGURE 6.-Chordwise distribution of generalized pressure cocdicient at surface of airfOil. 

number increases above 1 the pressure distribution tends 
toward the well-known supersonic type of distribution in 
which the pressure is uniform over each surface of the profile. 

PRESSURE DRAG 

Let the ordinates of a general profile be represented by the 
equation y/c= (t/c) f(z/e). With the aid of equation (8)) 
the pressure-drag coefficient can then be written in the 
generalized form 

(Y + 1Y3 (t,c>5,3 cct=$ cp ($ +’ (z) d (;)=Eb(t.) (9) 

where f’(x/c) is the derivative of f(x/c) with respect to its 
argument and the integration is performed around the profile 
in the clockwise direction. In the specific case of the double- 
wedge profile, the ordinates of the front wedge are given by 
y/c= * (UC) (x/c). The portion of the generalized drag 
coefficient contributed by this half of the profile is thus 

where, because of symmetry, the integration need be per- 
formed over only the upper surface. For the rear wedge 
the ordinates are given by y/c= f (t/c)(l-x/c), and the 
corresponding portion of the generalized drag coefficient is 

(Y + 1Y3 E =-- CCZ,=-~~; c”, d(a) 
+ (t/c)“‘” 

(lob) 
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In the present study the integrals in equations (10) were condition and then also decreases toward zero. The details. 
evaluated by mechanical integration of the pressure-distribu- 
tion curves of figure 6. 

of the maximum are, however, not clear from Trilling’s work. 
In the case of &,, a small, analyti- As. shown by Liepmatm and Bryson (reference lo), the 

tally determined allowance was included for the effect of the slope which the curves of-figure 7 should have at the vertical 
singularity at the leading edge. The final results are shown axis can be determined from ‘.the previous results regarding 
in figure 7. The drag coefficient of the complete airfoil was the behavior of the local Mach number at the sonic flight 
obtained, of course, by adding the drag coefficients for the condition: For example, taking the derivative of equation 
front and rear wedges. (lOa) with respect to .$, one can write for the front wedge 

The results of figure 7 indicate that at a flight Mach num- 
ber of 1 approximately two-thirds of the drag of the section 
is contributed by the rear wedge. As the Mach number 

6 
\ I I I 

0 X-t----X- X Present calculations 
0 Guderley and Yoshihoro (Ref.7) 

9 
\ Tronsonic small-disturbance theory 

-------Linear theory 

Tronsonic flow- 

OO .5 I .o 1.5 2.0 2.5 
M,2-I 

Similarity oarometer, (;[lr+,,l,k12,3 

FIGURE ‘I.-Variation of generalized drag coefficient. 

increases from 1, the drag coeflicient of this portion of the 
profile decreases continuously. At the same time, the drag 
coefficient of the front wedge first increases until it is con- 
siderably above that of the rear half, after which it also 
decreases. At a sufficiently high free-stream Mach number, 
the drag coefficient of each half of the airfoil is essentially the 
same. As a result of the difference in the drag variation of 
the two halves, the drag coefllcient of the complete profile 
shows little variation for some distance above a Mach num- 
ber of 1. As the shock wave attaches to the leading edge, 
however, and the local flow becomes everywhere supersonic, 
the total drag coefficient drops markedly. Far into the 
supersonic regime the variation is again less rapid. 

The curve for the front wedge in figure 7 has been continued 
into the subsonic range of flight speeds (f,<O) by the 
analytical work of Cole (reference 20). The continued curve 
decreases monotonically toward zero as the value of ,$ is 
reduced. The continuation of the curve for the rear wedge 
has been accomplished by Trilling (reference 21). This 
curve apparently reaches a maximum at some subsonic flight 

1 It follows from equation (7) that 

and hence, by virtue of equation (6), that 

Substitution of this value into equation (11) leads to the 
final result 

(124 

This is the result given previously by Liepmann and Bryson. 
The analogous relation for the rear wedge, obtained by 
proceeding from equation (lob), is 

(12b) 

IL - 
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The curves for the front and rear wedges in figure 7 thus 
have equal but opposite slopes where they meet the vertical 
axis. It follows that the curve for the complete profile has 
zero slope at the same point, that is, (d&/d&,)+,=0. 

It will be noted that figure 7 also includes curves obtained 
from the standard linear theory. That such results can be 
included in a transonic similarity plot of this kind has been 
shown by several writers (see, ,for example, reference 22). 
In the present case, the drag coefficient of the complete 
profile as given by the linear theory is (see page 154 of 
reference 23) 

cd= 4 (&foy);),,2 (13) 

This can be written in terms of the transonic similarity 
variables as 

& + lY3 
(t+9/3 cd’=& 

The front and rear of the profile each contribute half of the 
drag in the linear theory, so that 

The dashed curves of figure 7 have been drawn in accordance 
with these relations. 

For the rear half of the airfoil, the two theories illustrated 
in figure 7 are in reasonable agreement down to well within 
the regime of transonic flow. This result might not be 
anticipated, since the linear theory is based on the assumption 
of supersonic flow throughout the flow field. It is probably 
associated in some way with the fact that the local flow 
over the entire rear half of the airfoil remains supersonic 
(and nearly uniform) even after the flow over the front has 
become subsonic. For the front wedge, the results of the 
two theories diverge markedly even before the transonic 
regime is reached. The same is true of the curves for the 
complete profile. Within the transonic regime itself, the 
two theories give radically different results for both the front 
wedge and the complete profile. Near Q=O the two se& 
of results for the rear wedge are also completely different. 
This basic disagreement is a reflection of the fact that the 
linear theory is inherently incapable of dealing with problems 
involving mixed flows. 

To afford some idea of numerical magnitudes for a repre- 
sentative specific case, the curves of figure 7 have been 
replotted in figure 8 for t/c=0.0787 and y=1.4. This value 
of t/c is the value which would apply to a complete profile 
having the same half-angle at the leading edge (4%‘) as the 
thinnest wedge tested by Liepmann and Bryson (references 
8 and 1O).7 Also included in the present figure are partial 
curves calculated according to the standard shock-expansion 
method (see, for example, reference 24). This method, 
which is based on a stepwise application of the complete 
equations for an oblique shock wave and a Prandtl-Meyer 

7 In an earlier account of this work (see footnote I), a multiplicity of curves was drawn for 
each part of the profile on the basis of the transonic small-disturbance theory. This was done 
by using expressions for the similarity parameter and pressure coefficient different from those 
of equations (1) and (7). In view of the subsequent developments outlined in footnote 4, 
such complications now appear to be of lessened significance. 
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FIQURE S.-Variation of drag coefficient with Mach number for t/c=O.O787 and y=1.4. 

expansion, applies only in the range in which the shock-wave 
equations predict an attached wave with not less than sonic 
velocity over the front half of the profile. Except for a 
small error in the drag of the rear half near the low end of 
this range (see footnote S), the shock-expansion method 
provides the exact inviscid solution for the double-wedge 
profile. 

Additional information of an exact nature can be included 
in figure 8 with reference to the rate of change of the drag 
coefficient at the sonic flight speed. As previously implied, 
the analytical results of Guderley regarding flows with a 
free-stream Mach number close to 1 (reference 19) are not 
limited by the assumptions of the transonic small-disturbance 
theory. (The same can also be said of the physical argu- 
ments given by Liepmann and Bryson in reference 10.) 
This means that the result of equation (5)-namely, that 
(dM/dMo),o=,=O-may be regarded as an exact result 
and may be used to obtain exact relations for the slope of the 
drag curves at a free-stream Mach number of 1 (see appendix 
for details). The final equations, which are the only items 
of importance here, are as follows: 

For the front wedge 

(164 
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For the rear wedge 

4 t =-- 
0 - -& (%),wo,l (16b) r+1 c 

For the complete profile 

(16~) 

The short slanted dashes which appear on the line MO=1 
in-the various parts of figure 8 have been drawn in accord- 
ance with these relations. An exact curve for the transonic 
ratige would cross the line M,,=l with a slope conforming 
with these dashes and fair smoothly into the shock-expansion 
results at some point slightly to the right of the pertinent 
point S. The ordinate at MO=1 would not, of course, be 
necessarily identical with that computed from the small 
disturbance theory. 

It is of interest to compare equations (16) with the 
corresponding equations given by the small-disturbance 
theory. These can be found by differentiation of equations 
(10) and application of the results of equations (12). The 
final expressions are as follows: 

For the front wedge 

For the rear wedge 

For the complete profile 

de, (--I dM, M,=I=’ (17c) 

Equations (17a) and (17b) are the same as equations (16a) 
and (16b) insofar as the terms proportional to t/c are con- 
cerned. These terms are a result (see appendix) of a rela- 
tive variation between the static pressure at the sonic point 
and the reference static pressure in the free stream. They 
have the same magnitude but opposite sign for the front 
and rear wedges. They thus do not appear in the final 
equations for the complete profile. Equations (17) difl’er 
from the exact equations (16) by their failure in every case 
to include a negative term proportional to the drag coefficient. 
This term appears in equations (16) as an effect (see appen- 
dix) of a relative variation between t,he dynamic pressures 
in the free stream and at the sonic point. This effect is of a 
higher order than those which the small-disturbance theory 
includes. Because of the presence of this higher order effect, 
the exact theoretical curve for the complete profile, in pnr- 

titular, must have a slightly negative slope at a free-stream 
hllach number of 1.8 

CONCLUDING REMARKS 

The results of the present numerical analysis show the 
salient features of the two-dimensional inviscid flow over a 
thin, doubly symmetrical, double-wedge profile in the range 
of supersonic flight speeds in which the bow wave is detached. 
The most important findings can be summarized as follows: 

1. The vertical extent of the subsonic region behind the 
detached wave is large even when the wave is only a relatively 
small distance removed from the leading edge. This implies 
that the tip effects may be large on finite-span wings when 
the bow wave is detached. 

2. The local Mach number M at a point on t,he surface of 
the profile increases monotonically as the free-stream Mach 
number MO increases from 1. The increase in M is at first 
very slight for a considerable increment away from the 
sonic flight condition. This confirms previous findings that 
the local Mach number has a stationary value at M,=l 
and shows that these findings provide a good working ap- 
proximation even at Mach numbers a short distance removed 
from 1. When considered in terms of the pressure coefficient 
on the surface of the airfoil, the results show how the transonic 
pressure distribution tends, as the flight Mach number in- 
creases, toward the purely supersonic type of distribution 
known to exist in the upper portion of the speed range. 

3. As the free-stream Mach number increases from 1, the 
pressure-drag coefficient of the front wedge increases until it 
reaches a maximum at a flight speed somewhat below that 
for which the bow wave attaches to the leading edge. It 
then decreases, the rate of the decrease being at first rapid 
in the vicinity of bow-wave attachment and then less rapid 
in the range of purely supersonic flow. The drag coefficient 
of the rear wedge decreases continuously over the entire 
supersonic range of flight speeds. Because of the differences 
in the drag variation for the two halves, the drag coefficient 
of the complete profile varies relatively slightly near the 
sonic flight speed, decreases rapidly in the vicinity of bow- 
wave attachment, and then decreases at a progressively less 
rapid rate in the range of purely supersonic flow. 

In applying the foregoing results, it should be remembered 
that the theory assumes an inviscid fluid and an airfoil of 
small thickness and infinite span. Since the effects of finite 
span, in particular, will be to reduce the drag at transonic 
speeds, the present results should be looked upon as providing 
an approximate upper bound for the inviscid pressure drag 
of a%hree-dimensional wing. In fact, until some knowledge 
is obtained regarding the effects of finite span and fluid 
viscosity, it is doubtful if more accurate two-dimensiona& 
inviscid calculations for thin double-wedge profiles would be 
worth the trouble from an engineering point of view. In 
the present state of theoretical development, knowledge of 
these effects will probably have to come from experiment. 

8 This fact was originally pointed out to the authors by Qottfried Guderley. 
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PART II-DETAILS OF ANALYSIS 

The present part of the report is concerned with the details 
of the numerical analysis. The plan of this part is briefly as 
follows: In the first section, the basic problem of the finite 
wedge with detached bow wave is stated as a boundary-value 
problem for the transonic small-disturbance equation in the 
hodograph plane. Except for the introduction of a boundary 
condition along the sonic line to replace conditions previously 
prescribed in the supersonic portion of the hodograph, this 
material follows the lines established by Frank1 (reference 5) 
and Guderley (reference 2). It is recounted here primarily 
for the sake of completeness. In the second section, the 
boundary-value problem in the hodograph is reduced to a sys- 
tem of finite-difference equations, the solution of which is then 
obtained by relaxation techniques. This portion of the work, 
which constitutes the main contribution of the present part 
of the report, is discussed in some detail, since it is anticipated 
that the methods and equations which are presented will be 
useful in the solution of other problems involving detached 
shock waves. The third section describes the transformation 
of the hodograph solution for the finite wedge back into the 
physical plane. The fourth section is concerned with the 
characteristics construction used to obtain the purely super- 
sonic flow over the rear of the double-wedge profile, and the 
final section contains a few remarks on the accuracy of the 
solution.g 

STATEMENT OF BOUNDARY-VALUE PROBLEM IN 
HODOGRAPH PLANE 
COMPLETE HODOGRAPH 

A description of the flow in the physical plane has been 
given in part I, with figure 1 as the basis for the discussion. 
For convenience, this figure is reproduced here (with minor 
changes) as figure 9. The corresponding hodograph of the 
flow about the front wedge is shown in figure 10. The 

- Shock waves 
--- Sonic line (V/a,=l) 
- Streamline 
---- Exponsion 

3 
Mach 

- Compression lines 

FIGCRE S.-Flow in physical plane. 

Fromm lo.-Flow about front wedge in hodograph plane. 

0 The authors m indebted to William A. Mersman of the Ames Laboratory for suggestions 
leading to certain of the mathematical procedures used in the analysis. 

hodograph variables are the dimensionless speed V/a, and 
the inclination of flow 8, where V is the local speed of flow, 
a, is the critical speed, and 0 is measured relative to the x 
axis. 

The picture in the upper half of the hodograph plane can 
be described briefly as follows: The part of the shock wave 
which borders on the subsonic region in the physical plane 
appears in the hodograph as the subsonic portion AE of a 
shock polar. The shape and position of the shock polar 
are determined by the dimensionless free-stream velocity 
V&z, (or, what is equivalent, by the free-stream Mach 
number MO) and by the ratio of specific heats y.‘* The 
portion of the central streamline from the normal part of the 
shock wave to the stagnation point at the nose of the wedge 
maps into the portion A0 of the horizontal axis in the 
hodograph. The image of the wedge itself is given by a 
radial line inclined at the wedge angle 0, and extending from 
the origin 0 to the point B on the critical circle (V/a, = 1). 
The shoulder of the wedge, which produces an expansion fan 
of a locally Prandtl-Meyer type in the physical plane, appears 
in the hodograph as a portion of the downgoing characteristic 
(epicycloid) starting at B. The last Mach line from the 
shoulder to the sonic line (termed the separating Mach line 
in part I) appears as a portion of the upgoing characteristic 
which begins at the intersection E of the shock polar and 
critical circle. Point G, the point of intersection of the 
epicycloids from B and E, fixes the extent of the downgoing 
characteristic which must be considered in determining the 
solution in the hodograph. A typical streamline in the 
hodograph plane is shown by the line FCD. 

To obtain a solution of the detached-wave problem in the 
hodograph, a boundary-value problem for the differential 
equations of gas dynamics must be solved within the region 
AOBGEA. If the stream function $ is taken as the un- 
known, the pertinent boundary conditions are as follows: 

1. The value of + is constant along the basic streamline 
AOBG. 

2. The streamlines (i. e., the lines of constant $) leave the 
shock polar with a direction which is a known function of 
location on the polar. 

3. The increment in 9 over the portion AE of the shock 
polar has a prescribed value different from zero. 
The reason for the first condition is obvious. The second 
condition is a consequence of the requirement that, at every 
point on the shock polar, the direction of the shock wave as 
computed from the solution for $ must be compatibIe with 
the direction given by the equations for an oblique shock 
wave in a uniform stream. The third condition prevents # 
from being simply a constant throughout the hodograph and, 
in effect, fixes the scale of the flow field in the physical plane. 
It will be noted that no condition is prescribed along the 
boundary EG in the hodograph. Frank1 has proved (refer- 
ence 5) that the solution determined by the foregoing 
boundary conditions is unique. 

10 The equations which are pertinent here can be found in the work of Frank1 (reference 5). 
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SPECIALIZATION TO SMALL DISTURBANCES 

Original boundary-value problem.-As has been shown by 
Guderley (reference 2), the equations of the boundary-value 
problem in the hodograph are considerably simplified when 
restriction is made to the neighborhood of the critical speed. 
To this end, the quantity q is introduced according to the 
relation -- 

~, --, --- -q--(Y+ I)‘/3 y 

and 7 and the stream angle 0 are assumed sufficiently small 
that only their lowest powers need be retained in the analysis. 
This means, in effect, that the right-hand portion of the 
previous hodograph (including the shock polar itself) is 
made to shrink down to the vicinity of the point H, which 
defines the intersection of the critical circle and the hori- 
zontal axis. 

When the foregoing procedure is carried out and the limit- 
ing process is counteracted by a suitable enlargement of 
scale, the situation in the small-disturbance hodograph (i. e., 
in the ~,0 plane) appears as in figure 11. Here the critical 

8 
0 

-% I 

FIGCRE Il.-Small-disturbance hodograph. 

speed corresponds to the vertical axis q=O. The equation 
for the upper half of the shock polar in the simplified hodo- 
graph has the form 

fl=(q,-q) Jq 

where q,, is the value of 71 corresponding to the free-stream 
velocity Vo.ll By virtue of the limiting process, the stag- 
nation point at 0 has moved, in the present system of axes, 
infinitely far to the left. As a result, the part A0 of the 
horizontal axis (0=0) extends now from VI= ---TV to q= - m. 
The image OB of the wedge is similarly represented by the 
horizontal line 8=8,, T$ 0. The characteristics, which com- 
plete the boundaries of the field, have the simple form 

0=const. f g 7j3J2 (20) 

On the basis of the usual assumptions regarding flow near 
the critical speed, the differential equation for # reduces, in 
the present simplified hodograph, to the form 

k, - l?!he = 0 (21) 
11 The derivation of this and the other equations for the simpli6ed hodogmph is given by 12 Several procedures mere tried in the supersonic region, using both n square lnttim and 

Guderley in referena? 5. a lattice following the characteristics. All were unsuccessful. 

This is the mixed elliptic-hyperbolic equation studied by 
Tricomi in reference 13. The boundary conditions along the 
central streamline require that $ be constant-say O-on 
A0 and OBG and that #+O as q+(-- m) for Oses&,. On 
the upper half of the shock polar, the boundary conditions 
require that the lines of constant # must have the slope 

de 
J 

-- 
q*+7q tl0+7 -= - 

dv ’ 3qo+5q 2 (224 

On a line of constant #, dO/dq can be replaced by -1L,& so 
that the foregoing condition can also be written 

A- 70+77 
3q1,+5q J 

qo+tl 2 !h=O (22b) 

The final boundary condition requires that 9 must have 
some given value fiE#O at the point E. Since the coordi- 
nates of the flow field will ultimately be expressed in terms 
of a characteristic dimension of the wedge, the actual value 
assigned to & is purely a matter of convenience. As before, 
no boundary condition is specified along the characteristic 
EG. 

Elimination of the supersonic region.-The foregoing is the 
boundary-value problem for the finite wedge as formulated 
by Guderley. It was the original intention in the present 
work to obtain a numerical solution of this problem on the 
basis of the boundaries and boundary conditions which have 
been described. Efforts in this direction failed, however, 
because of difficulties in obtainmg convergence of the relaxa- 
tion process in the supersonic portion BGE of the hodo- 
graph.” Similar dimculties have been reported. in references 
25 and 26 with regard to relaxation calculations of the 
transonic flow through a converging-diverging nozzle. The 
reasons for the difficulty in the present case are not apparent. 
Fundamental questions would appear to be involved con- 
cerning the stability and convergence of the finite-difference 
scheme for the Tricomi equation in the hyperbolic domain. 
A study of these matters, similar perhaps to that reported 
for the wave equation in reference 27, may be a prerequisite 
to numerical solutions of mixed-flow problems in the general 
case. In the present example, however, the difficulty can 
be circumvented by mqdifying the boundary-value problem 
so as to eliminate the supersonic region from explicit con- 
sideration. 

The elimination of the supersonic region depends on a 
formula given by Tricomi (reference 13, equation (2.19)) 
which relates the behavior of $ on the vertical axis to its 
behavior on a characteristic. In the present case, in which 
fi is identically zero on the characteristic BG, this formula 
reduces to an integral relation between fi and &.,-at points 
on the sonic line. This relation has the form 

(23) 
where 

x=8,-e 

F@)= 4w, 0) 

GW=Mo, 0) 
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and X’ is a variable of integration (see fig. 12). The numeri- 
cal constant kI is given by 

k 
1 

_ 33’3r3( l/3) 
41r2 

where r (l/3) is the gamma function of the argument l/3. 

I- 
I 

FIGURE 12.-Hodograph in vicinity of sonic line. 

For the accuracy required in the later numerical work, 
the value of this constant may be taken as 

Ic1=1.013 Wb) 

Satisfying equation (23) everywhere on the sonic line from 
B to E is completely equivalent to satisfying the condition 
$=O on the downgoing characteristic from B to G. 

For the present application, it is convenient to invert 
equation (23), which can be done by means of Abel’s formula. 
This gives (see reference 28, p. 229) 

The differentiation indicated on the right is readily accom- 
plished by first transforming the integral to one with fixed 
limits by means of the substitution X’=tX. The result is, 
after reverting to the original notation, 

&ll G(x)=-- - - 
CS 2?rkl X 3 

A MF= dx’+ 
o (A-X’)2’3 

H& dh’] 

Transforming the first integral through integration by parts 
and noting that F(0) =O, one obtains finally 

This can be written in the ~,0 notation as 

i4io,e)+& JI &!3 de’=0 n- 1 (25) 

where #=0,---X denotes the variable of integration. As 
with equation (23), satisfaction of equation (25) everywhere 
on the sonic line between B and E insures that 9 is zero 
everywhere on the characteristic from B to G. By regarding 
equation (25) as a boundary condition along BE, the region 
of solution of the partial differential equation (21) can be 
confined to the purely subsonic portion of the hodograph 
(q s 0). Relaxation methods can be used to solve the 
resulting elliptic problem without essential difficulty. 

Equations’in normalized form.-To carry out the numerical 
calculations, it is convenient to normalize the equations of 
the boundary-value problem by means of the transformation 

i=;, L&& 
This is equivalent to introducing the rules for transonic 
similarity (see for example, references 2, 15, and 29). The 
particular form of transformation chosen here has the advan- 
tage for the present work of providing a unique shock polar 
with conveniently located horizontal and vertical intercepts. 

With the foregoing substitution, the differential equation 
(21) takes on the following form in the G,e plane: 

-4 e 

FIGURE la.-Boundary-nlue problem in fi,; phne. 

Consistent with the elimination of the supersonic region, the 
boundary-value problem can now be summarized as follows 
(see fig. 13): 

1. On the basic streamline AOB: 

#=O for e=O, Gs---1 

$=O for 8=e,, ij60 

+Ofor+--a, OSi~i, 

(28) 

(29) 

(30) 

2. On the shock polar AE: 

for 
iq- g$ Jcjq *a=0 

i=(l-ij)Jlfij, -1 $GzsO (3 1) 
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8. On the sonic line BE: 

for 
lZ$j$, 

where 
j+E 

P3?rk, 
4. At the point E: 

(32) 

#=1/‘E (arbitrary constant#O) for ;i=O, a=1 (33) 

It is apparent from the preceding equations that a solution 
of the problem will depend on ,only the single parameter i,, 
which defines the position of the upper boundary in the ?j,i 
plane. This parameter is directly related to the transonic 
similarity parameter to which was used in the presentation 
of the results in part I (see equation (1)). The relation is 
easily derived with the aid of equations (18) and (26) plus 
the equation 

A@--1 v ~_-- 
(Y+l) a* 

1 
(34) 

which relates the speed and Mach number in the small- 
disturbance theory. (It is also necessary to note that, to the 
approximation of the theory, &, is equal to t/c.) The final 
result is L-b,/3 

(35) 

SOLUTION OF BOUNDARY-VALUE PROBLEM IN 
HODOGRAPH PLANE 

The solution of the boundary-value problem in the +,i 
plane is obtained in two steps, according to established pro- 
cedures for the numerical treatment of partial differential 
equations. (For introductory articles, see references 30, 31, 
and 32. For an extended discussion, see reference 33.) In 
the first step, the domain under consideration is covered by 
a square lattice, and a finite-difference approximation to the 
differential equation or boundary condition is written for 
each lattice point. The boundary-value problem for the 
partial differential equation is thus reduced to a problem in 
solving a large number of simultaneous algebraic equations. 
Solution of the latter problem by relaxation methods is the 
second step. 

REDUCTION TO FINITE-DIFFERENCE EQUATIONS 

The arrangement of a typical finite-difference lattice in 
the ;i,a plane is shown in figure 14. The basic latt,ice inter- 
val, which is the same in both directions, is denoted by A. 
Adjacent to the shock polar, the interval is adjusted so that 
the terminal lattice points lie on the polar itself. For pur- 
poses of formulating the finite-difference equations, the lat- 
tice points are conveniently grouped into five categories as 
follows (typical points in each category are indicated in 
the figure) : 

a. Regular internal points 
b. Points far to the left 
c. Points adjacent to the shock polar 

234239-53-3 

0 k 

I 

I I I I I I I I/ I 

FIGURE 14.-Illustrative finite-di&rence lattice in the 8,; plane. 

d. Points on the shock polar 
e. Points on the sonic line 

The form of the finite-difference equation pertinent to each 
category will be developed in the following paragraphs. 
The methods employed are standard, except for the some- 
what novel treatment of the boundary conditions along the 
shock polar and sonic line. 

Regular internal points.-The category of regular internal 
points comprises all points interior to the boundaries but 
not immediately adjacent to the shock polar. The situa- 
tion in the vicinity of such a point is as shown in figure 15. 

4e 
A a 

I 

A 

A l 2 

A 

FIGURE 15.-Reylar internal polut. 
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The difference equation which applies here is obtained by 
suitable approximation to the differential equation (27). 

If it is assumed that the unknown function #=#(G,g: 
may be expanded locally in the form of a Taylor’s series 
the values of $J at 2 and 4 may be written (see fig. 15) 

Addition of these equations and solution for &,;iilo givez 

(36a: 

which is a well-known difference espression for the second 
derivative. The corresponding derivative in the vertical 
direction is similarly represented by 

k&=$ (~3-2~0+~1)+0@*) (36b) 

Substituting these expressions into the differential equation 
(27) and neglecting the terms O(A’) then gives for the finite- 
difference equation at a regular internal point 

~~+~4-2?io(~,l+~3)-2(1--2110)~~=0 (37) 

where 7j0 denotes the horizontal coordinate of the point in 
question. The difference equation for internal points is 
thus the same for points on a given column but differs from 
one column to the next. For a point adjacent to the upper 
boundary OB-as, for example, the point a’ in figure 14-the 
value of $1 must be set equal to zero in accord with the 
boundary condition (29). Similar considerations hold for 
points adjacent to the lower boundary OA. 

Equation (37) represents the simplest possible finite- 
difference approximation to the differential equation (27). 
As is apparent from the derivation, the error involved is of 
O(Aa). Consideration has been given to improving the ap- 
proximation by including additional lattice points in the 
finite-difference equation or by incorporating higher-order 
difference corrections in the later relaxation work (c. f., 
references 34, 35, and 36). Because of the complicated 
nature of the boundary conditions along the shock polar 
and sonic line, however, consistent application of these pro- 
cedures did not appear feasible. The requisite accuracy in 
the present work has therefore been achieved by suitable 
decrease in the mesh interval A in those regions in which 
the function # varies most rapidly. This procedure has the 
secondary advantage of providing closely spaced values of 
the derivatives which are required for the later transforma- 
tion to the physical plane. 

Points far to the left.-In order to carry through the 
numerical analysis, it is necessary that the finite-difference 
lattice be terminated at some distance to the left in the 
hodograph. This can be done with the aid of an asymptotic 
solution valid for large negative values of 6. 

By separation of variables, it can be shown that the general 

solution of the differential equation (27) in the region 
6 s - 1, 0 25s &,, subject to the boundary conditions (28)) 
(29), and (30), is 

where Klj3 is the modified Bessel function of the second kind 
of order )5 (notation of reference 37) and A,, is an appropriate 
constant. At sufficiently large negative values of ;i the first 
term of the series will predominate, and the above solution 
can be approximated by 

If Kl,3 is then replaced by the first term of its asymptotic 
expansion (reference 37, p. 202) 

there results finally for $ the expression 

$=B sin 1 (38) 

where B is an unknown constant. 
The asymptotic solution (38) makes it possible to termi- 

nate the finite-difference lattice at a position on the left. 
Consider a typical lattice point in a column located at 
11=-p (as, for example, the point b in fig. 14). The neigh- 
boring points are then as shown in figure 16, where the 

. 

A 

4e---k---b:; A 
a2 

0 

A 

1 
3 

FIOURE X-Point at i=-,3, 

point 4 now represents a fictitious lattice point located at 
;j= - (p +A). If /3 is taken sufficiently large that A/p<< 1, 
then it follows from equation (38) that, to a first order of 
approximation, 

$=(l-$)exp(-Em) 
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Substitution of this value of #d into the previous equation 
(37) gives for the finite-difference equation at a point on the 
left-hand boundary 

~*+2LNih+~3)+[( 1-G) exp (-F Q@)- 
u) 

2Uf28)]~0=0 (39) 

The value of p to be used in any particular case is determined 
on the basis of computational experience. In general, the 
larger the value of a,, the larger must be the value of p to 
assure that the use of the asymptotic solution (38) is justified. 
Since the over-all result is insensitive to changes in the left- 
hand portion of the field, however, the choice of j3 is not a 
critical matter. 

Points adjacent to the shock polar.-Points adjacent to the 
shock polar require special treatment because of the irregu- 
larity of the intervals encountered near the curved boundary. 
Consider theltypical case shown in figure 17 (corresponding 
to point c in fig. 14). Here h and k define the length of the 
irregular intervals relative to that of the regular interval A. 

5 

A 

A A t 
0 
6. 4 

h1 

kA 

J 0 2 

FIQURE li.-Point adjacent to shock polar. 

To obtain the desired accuracy, it was found advisable in 
the present case to include three rather than two neighboring 
points in each of the coordinate directions. The value of + 
at the points 2, 4, and 6 is therefore written 

These may be looked upon as constituting three simultaneous 
equations for the first three derivatives of # in the horizontal 
direction at the point 0. Solution of these equations for 
htl o gives 

The corresponding expression for &rlo is identical except 
that k is replaced by h and #+, $t4, and $J~ by tis, $Q, and $5, 
respectively. Substituting t.hese expressions for the two 
second derivatives into the differential equation (27) and 
neglecting terms of O(A2) then gives for the finite-difference 
equation at 0 

2io 
W-h), 

l+h 1-$+5-J- 

1 +o= 0 (40) 

This reduces to the previous equation (37) when k=h=l. 
(The functions of h and k which appear here have been 
tabulated in reference 38. The intervals of tabulation are 
not always sufficiently small, however, to provide the 
accuracy needed in the present work.) 

Points on the shock polar.-In past applications of 
numerical methods to problems involving curved boundaries, 
it has not ordinarily been the practice to use a lattice with 
points located on the boundary itself. The prescribed bound- 
ary conditions have then been incorporated in the following 
manner (cf. references 39 and 40): First, the finite-difference 
lattice is extended, on the basis of the regular lattice spacing, 
to include fictitious points external to the boundary. This 
makes the lattice geometry at internal points adjacent to 
the boundary the same as at all regular internal points. 
Next, with the aid of the boundary conditions and suitable 
interpolation and extrapolation formulas, an expression is 
obtained for the independent variable at each external point 
in terms of the values at neighboring internal points. Finally, 
by substituting these expressions into the finite-difference 
equation for a regular point, the difference equations are 
written for the internal points adjacent to the boundary. 
In this way the boundary conditions are incorporated 
implicitly into the difference equations at internal points. 
The procedure is parallel in many respects to that used in 
terminating the present lattice at the left-hand side of the 
field. 

Although a procedure of the foregoing type can be devised 
to take care of the boundary conditions on the shock polar, 
a different approach was found advantageous for the present 
work. In this approach, the lattice points are placed 
directly on the boundary as previously described, and a 
difference equation is obtained at each such point by suitable 

Ii - -. 
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finite-difference approximation to the boundary condition. 
This leads to a somewhat larger system of simultaneous 
equations than would the more usual procedure but has been 
found in the long run to give more accurate results with less 
total effort. 

The boundary condition (31), which is thus the basis for 
the finite-difference equations on the shock polar, can be 
written 

thi--S(r7k=O (41) 
where 

S(o)=gpT% 
The problem now is to determine difference expressions for 
the derivatives & and #; at points on the polar. Consider, 
for example, the typical situation shown in figure 18 (cor- 
responding to point d of fig. 14). To determine #i, the value 

13 

A 

2 

!l 

FIGURE B.-Point on shock polar. 

of fi at each of the interior points 1, 2, and 3 is written, as 
before, in terms of a Taylor’s series about the boundary 
point 0. Solving the resulting three equations for- the 
derivative $; at 0 then gives 

N2+h)+2(1+h)2 Ito+(l+w+4 $/- ~- 
2h 

W fh) 
l~h i‘.+$$$ h]+O(A3) (42) 

This expression, which includes terms of 0 (A’), is inconsistent 
in order of accuracy with the expressions previously employed 
in setting up the finite-difference equations at internal points. 
Since end differentiation is, even for a given order of mathe- 

matical accuracy, inherently less precise than differentiation 
at a midpoint (see error terms in reference 38), the retention 
of the second-order terms was here thought advisable. 

The determination of the corresponding expression for & 
is a bit more involved. Expanding # at the boundary points 
4 and 5 by means of Taylor’s series in two dimensions gives 

An expression for &lo is already known from equation (42) 
in terms of &, &, ti2, and $3, and an expression for +;alo can 
similarly be determined. The two foregoing expansions may 
thus be regarded as constituting two equations for the three 
unknowns &lo, &‘;iilO, and &;I,,. To solve for &lo, one more 
equation is necessary. This is provided by the differential 
equation (27), which also applies on the boundary and which 
may be written at the point 0 as 

Y5~+-2hhilo=o 

The solution for +F],, is then found as 

(43) 
where #;I,, is given by the previous equation (42).13 

The required finite-difference equation for the point on the 
shock polar can now be obtained by substituting expressions 
(42) and (43) into the boundary condition (41) and neglect- 
ing the higher-order terms in each case. The result can 
finally be written 

where K=K(e,f ,%) and L=L(e,f,$ are given by 

K= 1 

(e+fPh)+2ef 

L=(e-fl (in-$) K 

Equation (44) is convenient for points on the shock polar 
For which -0.6 5 G<O. For -l<G<-0.6, the general 
procedure is the same except that the points 0, 1, 2, and 3 are 
low more conveniently located on a horizontal line and the 
mantities e, f, and h are redefined accordingly (see fig. 19). 

13 It will he noted that the coefficients in equation (43) become undesirably large as f--e nnd 
re undefined whenf=--e. This results from the fact that the determinant of the coefficients 
1 the simultaneous equations used to obtain +; lo vanishes when(= --E. Difficulties from this 
DUNX can be avoided by judicious choice of the lattice points. 
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FIGURE lg.-Alternative arrangement for point on shock polar. 

The resulting finite-difference equation is identical with 
equation (44) except that the terms which previously arose 
from the expression for #;I,, are now multiplied by - 1. 

Points on the sonic line.-The difference equation for 
points on the sonic line is obtained by finite-difference ap- 
proximation to the boundary condition (32), which can be 
written, to the accuracy required in the numerical work, as 

' &(0,?1)+0.342 
s 

'ki(o' "I dG’=O 
a, (a’- ;y3 

The procedure varies depending on whether the difference 
equation is being written for the first point below the upper 
boundary or for one of the lower points. 
First point below boundary: 

At the first point below the upper boundary the situation 
is as shown in figure 20. To approximate the integral in 

B 

A A . . 
ii i 

FIQURE Z&--First point on sonic line. 

0 

equation (45), use is made of Guderley’s singular solution 
for transonic flow over a convex corner (reference 18). On 
the basis of this solution, it can be shown that the variation 
of 4 along the vertical axis in the immediate vicinity of the 
point B is of the form 

*-(1,- iq4’3 (46) 

If the lattice spacing is made sufficiently small, this asymp- 
totic relation may be taken as approximately correct over 
the entire intreval from B to 0, so that within this interval 

For the first point below the boundary, the integral in equa- 
tion (45) can thus be written ?. 
S ’ #do,@ dj’- 3;t3 s;=’ 

-I l/3 
&j’= 

;, (at.-4)2/3 
(ew--e >, 

r [A-(0,-0')]2'3 

where T=(&,--l')/A. The integral on the right can be re- 
duced to standard form by means of the substitution ~(1 - 7) = 
23/4, which gives 

S 1 71/3 

IJ (l- 7)2'3 
&=3 S ‘-6% 

22’3 0 Jl-23 

This is an elliptic integral of the first kind. Its value, as 
determined from the equations and tables of reference 41, is 

The integral in equation (45) thus becomes, in the present 
case, 

To approximate the derivative & in equation (45), $ is 
expanded at points i and ii by means of a Taylor’s series 
about point 0. Terms involving +‘rifi10 may be omitted here, 
since the differential equation (27) shows this derivative to 
be identically zero at points on the sonic line. The values of 
$ at i and ii can thus be written 

Solution of these equations for &lo gives, to the second 
order in A, 

(48) 

Substitution of expressions (47) and (48) into the boundary 
condition (45) gives the following finite-difference equation 
for the first point below the upper boundary: 

(49) 
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Unlike the previous equations (37), (39), (40), ad (44) this 
equation involves the value of A. 

Lower points: 
For a general point below the first lattice point, the situa- 

tion is as represented in figure 21. The integral in the 
boundary condition (28) is here evaluated in three sections. 

c 

I! 

l A A 
ii I 

FIQURE 21.-Cheral point on sonic line. 

The integral over the lattice interval from B to n-l is evalua- 
ted on the bask of the asymptotic relation used before. The 
integral from n-l to 1 is evaluated by assuming a linear 
variation in I& over each of the included intervals and then 
integrating analytically. The linear assumption is suf- 
ficiently accurate here, since this entire middle section con- 
tributes only a relatively small portion of the complete 
integral. The integral from 1 to 0, which contains a singu- 
larity in the integrand at the point O, is evaluated by ex- 
pressing # as a cubic in terms of its value at the points 2, 1, 0, 
and -1 and then integrating analytically as before. The 
added accuracy of the cubic is required here, since this last 

section contributes by far the majority of the over-all value. 
The boundary condition (45) may thus be written 

&(0,@+0.342(J1+J~+J,)=O (60) 

where the J’s represent the three component integrals just 
described. 

Proceeding to the details of the above procedure, the 
integral from B to n-l is first written 

where, as before, 7=(~?~--8’)/A. This integral can be 
expressed, if desired, as the difference of two elliptic integrals 
of the first kind. For present purposes, however, it is more 
convenient (and sufficiently accurate) to expand (n-~)-*/~ 
according to the binomial theorem and integrate termwise. 
This gives finally 

J1-(n;)2,3 
-- 

l + 

This expression is used, of course, only for nz2. 
On the basis of the assumption of a linear variation of # 

between adjacent lattice points, the integral from n-l to 1 
becomes 

n-2 
c+ 

m+1 -,‘m 

s 

a,- h-AA 1 
,i,- (n -m-l)A [nA-&- 8’)]2’3 

di? 
m=1 A 

Carrying out the integration gives 

Jz=& g Km+1Y3-~1’31 (An-hn+J (524 

This expression is valid for nz3. (For n=2, J2 obviously 
does not exist.) For n>3 it is convenient to rewrite the 
summation so that the value of $ at a given point is not 
repeated in successive terms of the series. This is done by 
separating expression (52a) into two series (one with J/m and 
one with #n+l), expanding these series, and then regrouping 
terms. The result is finally 

Jz=$3f[21’3- l] $l+ns [(m+ 1)“3-2m”3+(m- l)““]&- 
Vk= 

[(n-1)1/3-(n-2)1’3]#,-1 (52b) 
1 

This expression is valid for 7~~4. 
To evaluate the integral from 1 to 0, # is represented 

within this interval by a cubic of the form 

where a, b, c, and d are determined such that # has the 
proper values at the points 2, 1, 0, and -1. This expression 
is to be substituted into the integral 

J3= S 8,--n* Y%O, i’) 
g,- (n -1)A [nA-(t!?,-- a’)]*/” 

di, 
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The result is finally, after evaluation of the coefficients a, b, 
c, and d, 

The finite-difference equation for a general point on the 
sonic line can now be obtained by replacing the J’s in equation 
(50) by the expressions (5’1), (52), and (53) and using the 
previous expression (48) for the derivative &I,,. The result 
is a lengthy linear equation involving the value of J, at the 
points i, ii, - 1, 0, 1, 2, . . . , n-l, n. Fortunately for the 
later relaxation work, the coefficients of the terms turn out 
to be relatively small for all points above the point 2. 

Distribution of mesh points-When an attempt is made to 
solve the present problem with a coarse mesh, it is soon found 
that most of the variation in $ takes place in a relatively 
small region near the intersection of the shock polar and 
sonic line. To obtain a sufficiently accurate solution in a 
practicable length of time, it is therefore necessary to employ 
a graded lattice, that is, a lattice which has different spacing 
in different parts of the field. Figure 22 shows the distribu- 
tion of lattice spacing found satisfactory in a typical case 
(au)= 1.6). The particular arrangement shown here involves 

k-l.6 
1.6 

I 

A=0.2 

I 
I 

I I 1 I I I I I I -2.0 -1.8 -1.6 -1.4 -1.2 -1.0 -.6 -.6 -.4 -.2 ‘;i 

FIGURE 22.-Distribution of lattice spacing for 8,=1.6. 

a total of 228 lattice points. For other values of I,, the 
grading of the lattice follows the same general scheme. 
Obviously, however, the total number of lattice points must 
be increased as the upper boundary is moved farther from 
the shock polar.14 

Formulas (51), (52), and (53), which are used to approxi- 
mate the integral along the sonic line, presume the existence 
of lattice points at a uniform interval over the full distance 
from the upper boundary to the point in question. This 
condition is not fuhilled in a graded lattice such as that 
indicated in figure 22. Some modification of the method 

14 Owasionnlly, when two points on or adjacent to the shock polar fall very close together, 
one of the points is arbitrarily omitted. An expression for the omitted value of $, which is 
then necessary to complete the difference equation at neighboring points, is found by parabolic 
interpolation between the values at the aveilnble locations. 

must therefore be made to obtain the finite-difference equa- 
tion for a point on the sonic line in one of the regions of finer 
mesh. This requirement was satisfied by means of a simple 
averaging process in which the contribution of nonexistent 
he-mesh points is replaced by an average contribution 
expressed in terms of J/ at bracketing points on the available 
coarser net. Since the contribution of individual-points is 
small even for points only moderately removed from that 
at which the equation applies, a rather crude averaging 
process is sufficient in most cases. (The details need not 
be given here as they would soon become apparent to anyone 
working with the method.) When the averaging procedure 
would not be sufficiently accurate (as when the point at 
which the equation applies is near the line of demarcation 
between two different sized meshes), fictitious intermediate 
points are introduced into the coarser net and the value of 9 
at these points is obtained from plots of the distribution of 
# along the sonic line. 

SOLUTION OF FINITE-DIFFERENCE EQUATIONS 

By the methods of the foregoing section, a finite-difference 
equation can be obtained for each lattice point in the hodo- 
graph plane. The result is a large number of simultaneous 
algebraic equations involving an equal number of unknown 
values of $. Since the number of unknowns in each equation 
is small, the equations lend themselves well to solution by 
relaxation techniques.‘5 

The mechanics of the relaxation process have been well 
described by various authors (references 30, 31, 32, and 33) 
and need not be gone into here. For present purposes it was 
found satisfactory to take tiE in the boundary condition (33) 
equal to 10,000 and work with integer values of # throughout 
most of the field. The residuals in the relaxation process 
were eliminated to within limits of -+2 (with due care, of 
course, that all residuals in any given area were not pre- 
dominately of the same sign). To obtain satisfactory smooth- 
ness of the solution near the left-hand boundary in some 
examples, it was necessary in this region to work with values 
of $ to 0.1 and eliminate residuals to within f0.5. When- 
ever the coefficients in the finite-difference equations were 
relatively small, the corresponding terms were neglected in 
the point-by-point adjustment of ti. The error so intro- 
duced was eliminated periodically by recomputing the residu- 
als using all terms in the finite-difference equations. This 
procedure was particularly helpful in the case of the lengthy 
equations which apply at points on the sonic line. The 
transition between the various regions of the graded lattice, 
which is not often discussed in the literature, was accom- 
plished by the use of overlapping fields in essentially the 
manner described in reference 42. 

By means of the foregoing procedures, the boundary-value 
problem in the hodograph plane has been solved for values of 
8, of 1.3, 1.6, 2.4, and 4.2. These are equivalent, respec- 
tively (see equation (35)), to values of to of 1.058, 0.921, 
0.703, and 0.484 as given previously in part I. As an ex- 
ample of the solution in the hodograph plane, the variation 
of # for e,= 1.6 is shown as a function of ij and i in figure 23. 

15 It is interesting to note that, of the mmplete set of simultaneous equations, only two- 
those for the points on the shock polar and sonic line immediately adjacent to the point E- 
are not homogeneous. Only this fact prevents the solution of the complete set from being 
identically zero. 
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FIGURE 23.-Representation of $ as a function of i and 5 for k?,=l.S (E.=o.921). 

(These results correspond to the results shown in the physical 
plane in fig. 3.) Figure 23 shows clearly the rapid variation 
of fi near the intersection of the shock polar and sonic line. 
The calculated values of $ corresponding to figure 23 are 
listed in table I at the end of the report. 

TRANSFORMATION TO PHYSICAL PLANE 
FLOW FIELD 

The transformation from the hodograph plane to the 
physical plane is governed, in the small-disturbance theory, 
by the following equations (cf. reference 2): 

theory, all streamlines appear as straight lines parallel to 
the horizontal axis. When expressed in terms of ij and 8 

1 the foregoing equations become 

&&Y+ 1)1’3 
ha, 

The length I of the wedge, which is equal to one-half the 
chord of the double-wedge profile, can be found by inte- 
grating the first of these equatons over the upper boundary 
OB of the hodograph (see fig. 24). This gives 

the second of these equations implies that, in a flow field 
determined according to the transonic small-disturbance 



TRANSONIC FLOW PAST A WEDGE PROFILE WITH DETACHED BOW WAVE 23 

A i 
O- 

-I I ‘;i 

Froum 24.-Small-disturbance hodogreph in normalized form. 

With this relation the previous transformation equations 
can be put in the dimensionless form 

(54) 

where I,,, represents the integral 

Im= 
s 

_“J$r(+i,&n) di (56) 

To obtain the flow field in the form given in part I, equation 
(55) must be rewritten in terms of the ordinate function Y 
(see equation (2)). The result, derived with the aid of the 
relation 

is 

8 =&t/, zo 
to 213 

dY=[(-r+l)(t/c)]“3d (,)=(s d$ (574 

Integrating this relation, subject to the condition that Y=O 
when $=O, gives 

Y=[(rf l)(t/C)p (pg lJ5 (57b) 

To utilize the foregoing equations for actual computations, 
it is first necessary to evaluate I,. Since numerical values 
of $ are available in the hodograph only for ---p 5 < s 0, the 
evaluation must be caried out in two parts as follows: 

The first integral is evaluated from the results of the numer- 
ical solution by mechanical integration of a curve of ;j$,(<,ti,) 
versus 7j. The values of the derivative used for this purpose 
are obtained from the equation 

(59) 

FIGURE 25.-P&t on upper boundary. 

where the notation is as shown in figure 25. This equation 
is derived in the same way as equation (48), except that $0 
is here taken equal to zero in accord with the boundary con- 
dition.‘” It can be shown from Guderley’s singular solution 
for corner flow that for small negative values of 6 the curve 
of +#;(;i,B,) must behave essentially as 1q1”‘“. This result is 
useful in fairing the numerical results near ;j=O. The first 
integral in equation (58) contributes by far the majority 
(about 99 percent) of the total value of I,. 

To evaluate the second integral in equation (58) use is 
again made of the asymptotic solution (38). For this pur- 
pose, the constant B is determined such that the value of $a 
given by the asymptotic solution matches the numerically 
determined value at the point (-p,B,). Substitution of 
equation (38) into the second integral of equation (58) then 
gives 

s ” fM75, kWi= - PWd-P,iILJ x 
exp [ -$- (Z/3)“‘” 

to 1 
S -y (- $3/4 exp 

[ 
- $ (,-- 2i)3’z] dij (60) 

w 

where &(-p, fl,) is determined from equation (59) applied 
at <= -p. The integral on the right is transformed through 
the substitution 

$ (- 2?j~3/2,~ 
ID 

which gives 

16 The fact that the second derivative &;;I0 may be taken a.3 zero in the present derivation 
follows from the boundary condition and the differential equation (10). 
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The integral here is then found with sufficient accuracy by 
means of the following asymptotic formula, valid for large 
values of the lower limit (see pp. 95-96 of reference 43): 

s 

m 
Wv-le--wdWE zv-le-z 

P 

Equation (60) thus reduces finally to 

S --~Wi,ko)di=- z 0 b *‘2$w%8,) (61) 

With the value of 1, known, equations (54) and (57) can be 
used to obtain the coordinates x/c and Y corresponding to 
any point in the +j,ti plane. The value of Y is obtained by 
direct substitution of the appropriate value of $ into equation 
(57b). The value of x/c must be found by suitable integra- 
tion of equation (54). The location of the vertex A of the 
shock wave is found, for example, by integrating equation 
(54) along the line OA in the hodograph (see fig. 24). If the 
leading edge 0 is taken as the origin in the physical plane, 
this gives 

The integral here is evaluated in two parts following the pro- 
cedure previously used in determining I,. 

For the abscissa of a point F on the shock wave, equation 
(54) gives 

where the integration is now taken from A to F along the 
shock polar. For purposes of numerical evaluation, the 
integrand here can be simplified by writing 

If (&/fi;) and (da/dij) are replaced by the appropriate func- 
tions of 6 from equations (31), there results finally 

(63) 

The integral in this equation is evaluated by plotting a curve 
of # versus 41 +f from the numerical results along the shock 
polar and carrying out the necessary integration by me- 
chanical means. 

The abscissa of a point on the sonic line is found by inte- 
grating equation (54) along the t? axis from B to C. Since 
point B is situated in the physical plane at Z/C=%, this gives 

(64) 

The integral here is evaluated by mechanical integration of a 
curve of &(O,i) versus 8, where #,-(O,e) is found from equa- 
tion (48). As can be seen from equation (45) and relation 
(46), &(O,$) in the vicinity of point B varies essentially as 
@,- t3)2’3. This fact is of use in drawing the curve of &(O,e) 
near ij=a,. It can further be seen with the aid of equation 

(57b) that near the shoulder of the wedge the transformed 
sonic line has the form 

X 0 - -I,Y5/4 
cc 2 

This relation is useful in establishing the detailed shape of 
the sonic line in the physical plane. It shows, in particular, 
that the sonic line will have a vertical tangent and an infinite 
curvature at the shoulder of the wedge. 

PRESSURE DISTRIBUTION AND DRAG 

To complete the analysis of the front wedge, it is left to 
determine the pressure distribution and drag. Integration of 
equation (54) gives for the chordwise location on the wedge 
of a given value of ;i 

(65) 

The speed parameter t= (ALP- l)/[ (7-t l>(t/c)]“‘“, which was 
used to present the results in part I, is related to i by the 
following equation, derived with the aid of equations (18), 
(26), (34), and (35): , 

(66) 

With these equations, the distribution of 2: a.s a function of 
x/c is readily determined. The integration of equation (65) 
is carried out by mechanical means using the same curve 
previously employed to determine Im. To fair the resulting .$ 
curve in the vicinity of the shoulder, use is again made of 
Guderley’s analytical findings, which show that in this 
vicinity 

With the chordwise distribution of t known, the pressure 
distribution and drag can be found as described in part I 
(see equations (7), (8), and (10)).17 

CHARACTERISTICS CONSTRUCTION OVER REAR OF AIRFOIL 

The characteristics in the 5, 8 plane (?j>O) are given by 
the following relation obtained from equations (20) and (26): 

j = const. * 7 ij312 

The corresponding directions of the Mach lines in the 
generalized physical plane, as determined from this relation 
and the transformation equations (54) and (57a), are 

(68) 

To the present order of approximation, therefore, the slope 
of the Mach lines is independent of the local inclination 8. 

17 The analytical allowance for the singularity at the leading edge, mentioned in connection 
with equation (lob), is easily found with the aid of the asymptotic solution (38). 
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This is consistent with the previous result that the stream- The corresponding value of 9 is given by equation (69).18 
lines must appear in the physical plane as horizontal straight Figure 27 shows a typical Mach net constructed by step- 
lines. As a consequence, the construction of the Mach net wise application of the foregoing procedure. This net is for 
over the rear of the airfoil is particularly simple in the the case of a,=l.S &=0.921) and corresponds to the flow 
small-disturbance theory. field shown for the front of the airfoil in figure 3. The con- 

To aid in the construction, the equations for the character- struction is begun at the shoulder of the airfoil (z/c=l/2, 
-istics in the ii,-8.plane can be conveniently written in the form Y=O) with the values of 8, selected to provide approxi- 

mately equal spacing between the Mach-lines of the expan- 
sion fan. From the shoulder, the construction is carried 
outward to the sonic line and then inward to the rear surface 
of the airfoil. The drawing of the Mach-line segments 
adjoining the sonic line might appear at first to offer some 
difficulty, since a linear average is obviously unreliable to 

The symbols 4, and 6, denote, respectively, the ordinates 
determine a mean inclination in this vicinity. Actually, no 

at which the upgoing and downgoing characteristics through 
trouble is encountered from this source, since the point at 

a given point (+,I> intersect the vertical axis. Elimination which each Mach line meets the sonic line is already known 

of 0 between these equations gives 
from the hodograph solution for the subsonic field. The 
construction of the last segment approaching the sonic line 

3213 
ij=- (t&&)2/3 

thus reduces to a matter of simply connecting two known 
2513 (69) points. The slope of the first segment leaving the sonic 

line is found by either (a) multiplying the slope of the 
which can be substituted into equation (68) to obtain approaching segment by - 1, or (b) determining a mean 

inclination based on the easily demonstrated fact that a 

&=*(-sej”” (70) 
Mach line in the vicinity of the sonic line behaves essentially 
as a semicubical parabola.lQ It is immaterial to the final 
result which procedure is used. The identity of the Mach 

This is the basic relation for the characteristics construction lines reflected from the rear surface of the airfoil is determined 
in the physical plane. from equation (71) plus the boundary condition that at this 

The construction of the Mach net itself follows a simple surface I= - I,. As can be seen by comparing figures 3 
lattice-point procedure (cf. reference 44). By identifying 
each Mach line with its appropriate value of 6, or &, the 

and 27, only a relatively small portion of the sonic line 
need be known to determine conditions on the rear of the 

value of dY/d(x/c) at the intersection of any two Mach lines airfoil. 
can easily be determined from equation (70) (or its graphical 
equivalent). The basic construction necessary to locate an 

REMARKS ON ACCURACY OF SOLUTION 

unknown point c from the location of two known points a Quantitative statements with regard to the accuracy of 
and b is then as indicated in figure 26. The construction the present results are difficult to make. Fortunately, how- 

ever, a check on the accuracy of the solution is available in 
the work itself. This check derives from the fact that, in 

‘4 the subsonic portion of the field, the calculated location of 
a given velocity in the physical plane should, theoretically, 
be independent of the path of integration which is followed 
in the hodograph. Thus, for example, the position of the 
velocity +=O, a=l, which defines the point of intersection 
E of the shock wave and sonic line, should be the same 
irrespective of whether it is found from equations (62) and 
(63) 

* 
X/C 

FIGURE 26.-Basic construction for characteristics net. 

proceeds rapidly since, as pointed out, variations in the 
inclination of flow need not be considered in establishing the 
direction of the Mach lines. Where desired, the value of 
8 can be found from the relation 

Q,+& 
2 (71) 

or from equation (64) 

(73) 

1s In practice, the construction is actually carried out most easily in a plane of Y/(2&)11a 
versus z/c with the slope of the Mach lines given by 

d [Y/(2&,)1/3] 

d (z/d 

This allows a single graph of slope versus @a-&) to suffice for all values of 5,. It also pro- 
vides somewhat more convenient proportions for the construction of the Mach net. 

19 The latter possibility was pointed out to the authors by Gottfried CJuderley. 
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FIGURE 27.-Mach net over rear of airfoil for k=l.G &=0.921). 
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Actually, as was observed in connection with figure 2, the 
results of the two determinations show a small discrepancy. 
Such a result would be expected in any finite-difference 
solution. 

Discrepancies of the type noted can arise from two sources : 
(1) numerical inaccuracies in the relaxation solution of the 
finite-difference equations or in the transformation to the 
physical plane; (2) inaccuracies caused by the fact that the 
finite-difference equations themselves are not an exact 
representation of the boundary-value problem for the 
original partial differential equation. Experience with 
various refinements in the calculations indicates that the 
discrepancies here are primarily of the latter origin. Early 
computations with a coarse lattice and relatively crude 
finite-difference equations showed a considerable gap between 
the shock wave and the end of the sonic line. Increasing 
refinements in the grading of the lattice and in the derivation 
of certain of the finite-difference equations gave progressive 
improvement in reducing this gap. This improvement came 
about primarily as a result of progressive reduction in the 
value of the integral rW, the other integrals in equations (72) 
and (73) being relatively unaffected by the refinements in 
the calculations. Indications are that, in the results which 

were taken as final, the values of [&(;i,e”,)l and hence of I, 
are still somewhat too large. This means (see equation 
(57b)) that the ordinates of the shock wave and sonic line 
are probably somewhat smaller than they should be. The 
same is probably true, in general, of the corresponding values 
of Is/cl. Calculations of the chordwise distribution of ?j on 
the surface of the airfoil are, however, considerably more 
precise, since the errors in the two integrals in equation (65) 
tend to compensate. The refinements in the computations 
were, in fact, carried to the point where further betterment 
caused only negligible change in the pressure distribution and 
over-all drag. Further evidence of the accuracy of the 
results in this regard is provided by the ease with which 
the computed values fair into the results of Guderley and 
Yoshihara at .$=O and into the analytical curves which are 
available when the bow wave is attached and the flow is 
completely supersonic (see figs. 5 and 7). 

,: 

AMES AERONAUTICAL LABORATORY, 
NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS, 

MOFFBTT FIELD, CALIF., Oct. 8, 1951. 

APPENDIX 
EXACT RELATIONS FOR SLOPE OF DRAG CURVE 

AT A FREE-STREAM MACH NUMBER OF 1 

In part I of this report, exact relations are given for the 
slope of the curve of drag coefficient versus free-stream Mach 
number at a free-stream Mach number of 1. These rela- 
tions are based on the fact that at the sonic flight condition 
the local Mach number M at the surface of an airfoil is 
stationary with respect to variations in the free-stream Mach 
number MO-that is, (dM/dM,)Mo=l=O. The details of 
the derivation are given in the following paragraphs. The re- 
sults are not restricted to a double-wedge section but are 
applicable to the zero-lift drag of a symmetrical profile of 
any shape. 

The general equation for the pressure coefficient, valid for 
any Mach number and thickness ratio, can be written 

c P =P-PO-P-PO 
Qo 

,x;;=$(;-~)--$~ (Al) 

where p is the static pressure at an arbitrary point on the air- 
foil, p, and p* are the static and dynamic pressures at the 
point on the airfoil at which M= 1, and p, and pO are the 
static and dynamic pressures in the free stream. When 
M,= 1, conditions in the free stream and at the sonic point 
are obviously equal (poMo _ 1 = Pan, -, , qoMo - 1 = qeM, _ ,) so that 

(A21 

Differentiation of equation (Al) with respect to M, then 
gives for the rate of change of the pressure coefficient at 
M,= 1 

(A3) 

It is now necessary to evaluate the three derivatives on the 
right-hand side of this equation. 

If there are no shock waves present on the surface of the 
airfoil, the ratio pip, can be expressed solely in terms of the 
local Mach number by an isentropic equation of the form 

s=f(M) 
Y* 

where the exact nature of the functionf(A4) is immaterial in 
the present application. From this equation and from the 
known fact that (dA4/dM,),,eI=0, it follows at once that 

[~&+]Mo~l =f’(M) ($,+;)Mo=,=o (A4) 

If there are shock waves present on the airfoil, the argument 
is slightly more involved, but the same result applies. 
Equation (A4) states, in effect, that as the free-stream Mach 
number varies from unity the entire pressure distribution on 
the surface of the airfoil varies in direct proportion to the 
pressure at the sonic point. 

The derivative [d(p,/p,)/dMo],,,l, which defines the rela- 
tive variation between the static pressures in the free stream 
and at the sonic point, can be found by first expressing the 
ratio pa/p* in terms of the free-stream Mach number M,. 
The necessary expression can be obtained either from the 



28 REPORT 1095-NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

equations for isentropic flow alone (M,<l, no shock wave 
ahead of the airfoil) or from these equations plus the equa- 
tions for the normal shock wave (IM,>l, detached wave 
ahead of airfoil). In either case, if the expression is expanded 
about MO=1 in terms of ascending powers of (Mo2- l), the 
result is 

E=l- -& (M,2- l)+OKM,2--- l>“l 

Differentiation of this equation then gives 

[ d’dp$y] M,=l= -& (A@ 

The derivative [d(q,/q,)/dMo],o=l, which defines the rela- 
tive variation between the dynamic pressures in the free 
stream and at the sonic point, can be found by expressing 
pO/p* in terms of known quantities. The necessary relation 
is given by 

M,2 

from which it follows that 

The findings of equations (A4), (As), and (A6) can now be 
substituted into the previous equation (As). The result is 
the following important relation for the rate of change of the 
pressure coefficient at the sonic flight speed: 

(A7) 

This relation is exact within the limitations of the inviscid 
theory and is applicable to an airfoil of any.. shape and 
thickness ratio. 

The drag coefficient of the front portion of any symmetrical 
airfoil at zero lift can be written 

(t/c) 
%=J-- Gd (i) 

2 

where the integration is carried out over the surface forward 
of the position of maximum thickness. Differentiation oi 
this equation with respect to MO and substitution from 
equation (A7) gives, after integration, 

cm 
MO=1 

Similar reasoning gives for the rear portion of the airfoil 

4 t -- 
0 - -& (cd&,,1 r+l c 

(A91 

It follows that for the complete airfoil 

= -& b>M,=] (Alo) 

It is apparent from the foregoing derivation that the term 
proportional to the drag coefficient in each of these equations 
appears as a consequence of the relative variation between 
the dynamic pressures in the free stream and at the sonic 
point. The term proportional to t/c in equations (A8) and 
(A9) is a result of the relative variation between the corre- 
sponding static pressures. 
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